ey Towards Scalable Quantum Simulation on Wafer-Scale Engines

Introduction and Motivation

Quantum computers provide exponential computational benefits over
classical computers.
. Existing quantum computers’ efficiency is limited by high noise and low
qgubit count.
. Specialized hardware platforms like GPUs and FPGAs are preferred for
classical simulation to validate quantum algorithms [1-4].
. We propose an optimized method for the complex General Matrix-Vector
product (GEMV) operation that:
. Uses Cerebras Wafer Scale Engine (WSE) architecture
. Facilitates scalable, general purpose quantum simulation
. We experimentally demonstrate:
. The scalability of the proposed method using results from larger-scale
guantum circuits
. The suitability of Cerebras Wafer Scale Engines (WWSEs) for scalable
gquantum simulations

Background

Fundamentals of Quantum Computing

. Quantum computers leverage superposition and entanglement of
guantum states for advantage over classical computers in certain
workloads.

. Near-term noisy-intermediate-scale-quantum (NISQ) hardware
possesses strict decoherence constraints where quantum states break
down after a certain amount of time.

. Representation of an n-qubit quantum state vector:

3 . =1
20 1] €0 B 2
1)) = Z c;li) = . <¢|¢> I 22:; |Cz| =
al _an_l_ CfL E C

. Quantum operations act on quantum states and can be represented as
unitary matrices or quantum “gates”.

. All quantum gates can be decomposed into fundamental single-qubit
rotation and two-qubit CNOT gates.

. Quantum circuits should be optimized in terms of circuit depth and
gate count to avoid decoherence and gate errors.

. All guantum operations can be simulated using matrix multiplication
(GEMV) between the circuit matrix and state vector.
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Cerebras Wafer Scale Engine (WSE)

. Al processor containing a grid (fabric) of processing elements (PEs):
. Individual 48kB memory per PE

. No central memory or control hardware

. Communicate only with 4 neighboring PEs

. One-cycle memory access and communication
. Dataflow architecture with high internal bandwidth

. Designed for tensor operations in Al workloads
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Related Work

Cerebras Architecture Deep Dive [5]

. Introduces distributed built-in floating point multiply accumulate (FMAC)
instructions on WSE architecture

. Emphasizes high-bandwidth, low latency nature of WSE architecture
. Utilizes vector weight streaming to enable all Al model sizes on 1 chip

. Utilizing multi-threading CPUs, single GPUs, and multi-GPU accelerators

. Using batch execution and shot-branching to optimize multi-shot quantum

. Hybrid GPU-accelerated simulator designed for universal quantum circuits that

. Reconfigurable emulation of quantum algorithms focusing on achieving high

Hardware Acceleration for Quantum Simulation
Qibo [1]

Multi-Shot [2]

computing simulations on GPUs
QuEST [3]

can handle pure and mixed states

Reconfiqurable Emulation [4]

precision and high throughput

WSE Applications

Stencil-Based Computation Codes [6]

. WSE outperforms 4 Nvidia V100 GPUs by 2.5 and 2 Intel Xeon Platinum

CPUs by around 114 times for solving Laplace’s equation

Multi-Dimensional Seismic Processing with Algebraic Compression [7]

. Accelerates tile low-rank matrix-vector multiplications (TLR-MVMs),

assuming sparsity

. Scaling only achieved by utilizing additional hardware, requiring a minimum

of 6 CS-2 WSEs and tested at a maximum of 48

Fast Stencil-Code Computation on a Wafer-Scale Processor [8]

. Numerically solves PDEs without designing to scale, using 65% of CS-1

. Uses half-precision (16-bit) floats for hardware sparsity optimizations

Cerebras-GPT [9]

. Compute-optimal language models ranging from 111M to 13B parameters,

trained on the Eleuther Pile dataset

Fast Fourier Transforms [10]

. Up to 3-dimensional arrays on the Cerebras CS-2 system, which uses a

wafer-scale engine (WSE) with around 850,000 processing elements (PEs)
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. Latest version: WSE-3
. 762 x 1176 = 896,112 PEs
. 1.1 GHz global clock frequency

. Limited to single precision (32 bits) for
floating-point values
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. 10 occurs at the edges of the wafer
. 124 channels on WSE-3
. Current SDK |10 framework limits usage to 16 channels

Proposed Methodology

Compute Distribution for Maximum Parallelization My circuit Matrix
. With n qubits: n Np[
. Input and output vectors have N = 2" values N — 2
. Circuit matrix has N° values
. Each vector value accessed N times A- N x N N;
. Each matrix value accessed once
. Distribute matrix elements uniformly — distribute computation uniformly
. WSE grid has w x h PEs "N
. Partition matrix into w x h blocks of size M, x N, M, = | — M;
. Extra space is padded with zeros ~ /fU | w |
. Input vector has h blocks of N, values N — E PE |+ PE|> | PE || PE|+ [ PE|
. Output vector has w blocks of M, values h Np[:' I:E ;E P‘E P‘E ;E
. Each PE gets one block of matrix and input vector, ¥ ¥ ¥ ¥ 3
producing one partial block of output vector s [ PE P FE®|FE|®{FE|*{FE
L ) o gy, X ¥ ¥ ¥ 3
U1 A | Ao Ay ) 4 pE [+ PE|+[PE|+[PE|+[PE]| 7,
v % Az | Az Agp T £ I:E I:E P‘E P’E ;E
- : ; ; i {2 A I
o | A [Auz | [Aun | L INEEEEE
PE |-|PE |+ | PE || PE |»| PE
. Assign blocks to PEs spatially '
. Input vector blocks shared across row of PEs l lM]—l l l
. Row/column convention flipped from matrix for faster input | v ' om'put VeLtor ' i
. Output vector block accumulated down column of PEs Y .
. Bottom row outputs final collected result Inpul:llvae::: Bxgermg
h . .
Gop = > Auyyyprp € [0 ) §) = ®
Algorithm on PEs yr=1 7 3 | 4) Repeat for each input
. Matrix and input vector are two inputs XX 3) Accumulate into buffer
. Must buffer one, then compute when the other arrives S ey e o i+
. Two variants of algorithm explored My [l fa—{2}—{a}—{s} [ + [41] \ M,
. Buffer matrix, compute by vector data [4]Bs] {8]—{o] {7} {8}~ [zg] + [30].
. Great for multiple input vectors Circuit Matrix [V, ST
. Buffer vector, compute by matrix data R
. Better structure for specialization Mp (Np + 1) C+P <S5
. Three stages to algorithm: Vector Buffering
1) Input matrix/vector and buffer Rty
2) Input vector/matrix and compute _ Input Vector V) Output
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. Memory capacity S = 48kB
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. Partition matrix again into multiple “jobs” Nj h
. Jobs run in sequence, in any order X ' - :
. Job dimensions M; x N; configurable
. Optimization opportunities while scheduling jobs Mj
. Choose M; x N; to minimize zero padding
. Align across rows to skip collection & output
. With vector buffering, align down columns to skip -
vector input B Np
. Step 3 output can overlap with next step 1 input w L M, ['_'
. Jobs allow adjustable M; : N; aspect ratio B
. Larger M. Fewer times input vector needs to be sent B
. Generally better for matrix buffering
. Larger N Less partial result data to collect & output
. Generally better for vector buffering | N !
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Analysis Platform

. Cerebras’ WSE simulator used to run and profile our method
. Counts clock cycles required for entire GEMV operation

. Simulates variable number of PEs
. Can’t simulate large (WSE-3 scale) PE grids
. We demonstrate scalability by varying PE grid size

. Compare results for 1 PE up to 128 x 82 PEs (1.3% WSE-3)

. WSE-3 aspect ratio of 1.555:1 maintained
. Results compared against Qiskit Aer simulator
Input Data
. Input matrix and vector created with random values
. QHT circuits created for realistic application Qiskit [11]

. Gray-scale images of size 8x8 to 64x64 pixels were used

PE Grid Size
. Data for 1x1 PE was extrapolated for n > 8

. Simulator SDK struggled to handle qubit count larger than 8
. Throughput stayed constant and close to 98MB per second
. At 12 qubits, 128x82 PE grid has a 6/1x speed advantage

. Continuous performance improvement with more qubits
. Better parallel advantage with larger circuits

. Improvements with more PEs
. Significant given constant input channels
. Larger variance with more qubits

Memory Usage
. Larger allocation improves performance

. Larger buffers reduce job count and associated costs
. Less noticeable at the high end

. 48kB is suitable for methodology on WSE-3

M,/N, Ratio (Matrix Buffering)

. 1:1 (square) and 1:4 perform best

. Much higher N, performs poorly

. Larger M, potentially scales better than 1:1
. Slower at low qubit counts, but just as fastatn =12
. Deserves a more detailed future investigation

M,/N, Ratio (Vector Buffering)

. Performance is strictly better with larger N,
. Benefits most from buffer re-use
. Likely related to slow output on WSE

. More extreme ratios should be explored

Algorithm Type
. Matrix buffering shows clear advantage at n = 10

. Matrix buffering benefits from input/output overlap

. Output is less optimized, hurting vector buffering more
. Advantage diminishes by n = 12

. Vector buffering may scale better with n > 12
. Methods are too similar overall to conclude that

one is better than the other

QHT Image Fidelity

. Compared against Qiskit
Aer and classically-
performed GEMV for
correctness

. Tested at 100%, verifying
no loss from the simulated
methodology

Original Image

Simulated QHT-based Dimension Reduction on (64x64) Images
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Relevant Variables

M, & N, - controls job size and aspect ratio

irregularities influencing performance
. More than 100 actually available on WSE-3

. Qubit count (n) - number of qubits simulated
Performance Metrics

. PE grid size - demonstrates scaling and distribution
Memory avalilability - restricted to match smaller WSE size

Input channels - always 16 used, except 1 for 1x1 PE
. PE grid height is always a multiple of 16 to minimize 10

Algorithm - matrix buffering / vector buffering differences

. Throughput (GB/s) - calculated from clock cycle count
. Speedup - parallel advantage over a serial processor

Results and Analysis

Execution Time vs. Number of Qubits (Matrix Buffering, Mp = Np = 8)
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Scalability for Different Qubits (Matrix Buffering, Mp = Np = 8)
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Conclusion and Future Work

In This Work

. We proposed a method for quantum simulation using the
General Matrix-Vector product (GEMV) operation on
Cerebras’ Wafer-Scale Engines (\WSES)

. We demonstrated scalability and parallel advantage
using WSE simulations

. Results indicate increasing parallel performance
benefits with larger PE grids and qubit counts
. Method scales well to the size of a physical WSE
. We investigated optimal configurations for multiple
variables of our method
. Block aspect ratio & buffering scheme

Future Work
. Investigate optimizations to proposed techniques and
Implementations
. Specialize to specific quantum circuit types, accelerating
the method to compete with other hardware platforms
. Sparse matrix optimization
. Reduced matrix value range (integers, Os & 1s, etc.)
. Tensor contraction & circuit pipelining
. Include quantum error correction (QEC) techniques
. Port to Cerebras WSE hardware
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